
R vs Python, why you should learn both?
Author: Suryansh Singh

Supervisor: Saikumar Allaka (senior data scientist at Quadratyx)

Introduction
This paper is aimed at those who are looking to break into the field of data science or have already

done so, but are confused about which language they should learn first, R or python? This paper

highlights the differences between the two and explains why it is beneficial to know both. On the

internet, many people often offer their opinion about this subject from their personal experiences,

however this differs from those as it presents proofs via case studies (done under the supervision of

an experienced data scientist) as to which language is better and in what context. To determine the

better language, both R and python were judged based on their performance and ease of usability

with regards to topics like data analysis, time series analysis, natural language processing and machine

learning.

 Data Analysis
Data analytics is the process of inspecting, cleaning, transforming and modelling the data with the goal

of discovering useful information to support decision making. While it includes many subfields, only a

selected few have been covered in this paper.

Data preprocessing
Data preprocessing is a data mining technique that involves transforming raw data into an

understandable format for future modelling and analytics purposes. Real-world data is often

incomplete, inconsistent, and/or lacking in certain behaviors or trends, and is likely to contain many

errors. Data preprocessing is a proven process for resolving such issues and it prepares raw data for

further processing.

For this task, the ‘Lending club loan’ dataset was used which contained noisy data. In order to

preprocess the dataset, the less relevant variables were discarded using domain knowledge, missing

values were imputed using central tendency measures of their respective variables, outlier values were

identified and treated using a custom-made function, categorical variables containing more than 75%

missing values were discarded (as they would not provide any useful insight for solving the problem),

the remaining categorical variables were one-hot encoded (so that the computer could interpret them

better) and finally to help the computer deal with imbalanced values, the whole dataset was

normalized(scaled).

Language Run-time (in seconds)

R 330.332

Python 43.257

Fig1.1

http://www.quadratyx.com/
http://www.quadratyx.com/
http://www.quadratyx.com/

Language Packages used

R dummies, outliers, dplyr, DMwR

Python sklearn

Fig1.2

By performing the process mentioned above, in both the languages, figures 1.1 and 1.2 were obtained.

From those figures, it can be concluded that python is the language better suited for this task. Not only

is python faster than R for carrying out data preprocessing tasks but the fact that it also contains all

the preprocessing functionalities within a single external library gives it a massive advantage over R.

Exploratory data analysis
Exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main

characteristics, often with visual methods. Primarily, it is used for seeing what the data can tell us

beyond the formal modelling or hypothesis testing task. EDA also encompasses initial data analysis,

which includes checking assumptions required for model fitting and hypothesis testing and handling

variable transformation.

For this task, the ‘Sample-US Super Store’ dataset form Tableau1 was used and various graphs like bar

plots, line charts, area charts, scatter plots, histograms, box and whisker plots, tree-maps, pie charts,

bubble charts, word clouds, correlation plots and dual axis plots were plotted to explore and

understand the data better.

(tree-map made in r)

Fig1.3

Language Run-time (in seconds)

R 10.369

Python 29.228

Fig1.4

Language Packages used

R Plotly, treemap, wordcloud, ggplot2, corrplot

Python Plotly, matplotlib, seaborn, wordcloud

Fig1.5

By making the various plots mentioned above, in both the languages, figures 1.3, 1.4 and 1.5 were

obtained. Even though, R requires more number of packages to accomplish this task, it is quite easy to

make various specific plots in it as compared to in python. For example, it requires more lines of code

to make tree-maps and wordclouds in python, whereas they can be easily made in R with the help of

simple single functions. Combining this observation with the results obtained in figure 1.4, it can be

concluded that R is the more efficient language for this job, and since people don’t want to spend too

much time doing EDA, therefore R is the better suited language for this task.

Time-Series Analysis
A time series is a series of data points indexed in time order (E.g. stock data). Time series analysis

comprises of methods for analyzing the time series data to extract meaningful statistics and other

characteristics of the data. We can also predict future values in a time series by running predictive

models on the analyzed data, this is known as time series forecasting.

For this task, a dataset containing the stock data for 20 different companies trading on NASDAQ was

created using various data manipulation techniques. After the dataset was preprocessed, interactive

time series charts were made to gain a basic understanding of the data. To analyze it even better,

descriptive statistics for the data were calculated. Then decomposition techniques were used on the

stock data to identify the pattern and seasonality as it would assist in time-series forecasting. For the

ease of comparison, the dataset containing the stock data for Amazon was chosen for forecasting. This

dataset was then transformed accordingly and holt-winters’2 algorithm was implemented on it to

predict the future closing stock prices.

Fig2.1

(made in R)

Fig2.2

Fig2.3

Language Run-time (in seconds)

R 4.733

Python 11.172

Fig2.4

Language Packages used

R plotly, psych, xts, dygraphs

Python plotly, division, scipy, matplotlib, numpy

Fig2.5

By completing the process mentioned above, in both the languages, figures 2.1, 2.2, 2.3, 2.4 and 2.5

were obtained. From figures 2.4 and 2.5 it can be concluded that R is the language better suited for

this task. Not only is it quicker to do time-series analysis in R but also comparatively easier. In R,

complex forecasting algorithms can be implemented easily via simple functions, whereas python

requires the user to write the code for implementing the various algorithms from scratch.

Natural language processing
Natural language processing (NLP) is a field of computer science, artificial intelligence and

computational linguistics concerned with the interaction between computers and human languages,

and, in particular, concerned with programming computers to fruitfully process large natural language

corpora (samples).

For this task, a dataset containing the reviews for a restaurant taken from the internet was used. Before

the dataset could be used for sentiment analysis, it was preprocessed using the necessary packages in

both the languages. The preprocessing involved storage of all the reviews into a corpus, conversion of

all the letters into lowercase (for uniformity) and the removal of numbers, punctuation, non-relevant

words and white spaces from the corpus. After the preprocessing, a bag or words3 model was created

to facilitate the implementation of natural language processing on the reviews. For sentiment analysis

of the reviews, the bag of words model was split into testing and training datasets. The appropriate

classifiers were trained on the training set and then used to predict the sentiment of the reviews

contained in the testing dataset. Finally, a confusion matrix was created to be used as a measurement

of performance of the classifiers used.

Confusion matrix (in R) 0 1

0 79 21

1 30 70

(0 indicates a negative review while 1 indicates a positive review)

Fig3.1

Confusion matrix (in python) 0 1

0 87 10

1 46 57

(0 indicates a negative review while 1 indicates a positive review)

Fig3.2

Language Run-time (in seconds)

R 4.052

Python 6.217

Fig3.3

Language Packages used

R tm, SnowballC, caTools, randomForest

Python nltk, sklearn

Fig3.4

By implementing the process mentioned above, in both the languages, figures 3.1, 3.2, 3.3 and 3.4

were obtained. From the results given in figures 3.3 and 3.4, it can be observed that while the runtime

difference between the two languages isn’t that significant, Python requires a considerably less

number of packages to accomplish this task as compared to R. The NLTK package (in python) is also a

very mature NLP package that enables python to handle many complex NLP tasks which may not be

easily doable in R. By combining the results obtained from the figures given above with the fact that R

does not have a similar package to NLTK, it can be concluded that Python is the better suited language

for this task.

Machine Learning
Machine learning is the subfield of computer science that gives computers the ability to learn without

being explicitly programmed. In this paper for the sake of argument, only classification algorithms like

decision trees, k nearest neighbors, logistic regression, naïve bayes, support vector machines and

random forests have been covered. In machine learning and statistics, classification is the problem of

identifying which set of categories a new observation belongs to based on a training set of data

containing observations whose category membership is known.

For this task, the ‘Titanic: machine learning from disaster’ dataset from Kaggle4 was used. First the

dataset was preprocessed before machine learning could be implemented on it. After preprocessing,

the dataset was split into training and testing sets. The training set was used to train the different

classifiers to enable them to make predictions on the data stored in the test dataset more accurately.

To improve the performance of the models, k-fold validation was implemented on them, and by

comparing the confusion matrices of the different models, the model with the highest accuracy was

selected to make the predictions on the test set dataset.

(decision tree, for demonstration purposes)

Fig4.1

Classifier Name Model
accuracy

before k-fold
validation in

python

Highest

accuracy

per fold

in python

Average model

accuracy in
python after

kfold
validation*

Model
accuracy

before k-fold

validation in R

Highest

accuracy per

fold in R

Average model

accuracy in R

after k-fold

validation*

Logistic

Regression

79.62% 89.16% 79.26% 77.40% 85.71% 79.17%

KNN 65.55% 67.86% 65.46% 75.00% 67.47% 64.19%

Decision Tree 70.81% 85.88% 79.12% 80.77% 83.13% 79.40%

SVM(linear kernel) 78.42% 84.34% 78.43% 74.52% 85.71% 78.31%

Naïve Bayes 77.82% 83.13% 77.22% 80.29% 85.71% 77.96%

Random Forests 79.42% - 76.17% 80.29% - 78.35%

*(Even though the average accuracy is going down it is not necessarily a bad thing as earlier the models may have been overfitting to the
training set data.)

Fig4.2

Classifier Name Run-time python (in seconds) Run-time R (in seconds)

Decision tree 0.215 4.396

KNN 0.111 0.441

Logistic regression 0.202 0.917

Naïve Bayes 0.140 0.526

SVM 141.352 0.961

Random forest 0.106 0.775

(run-time includes the time taken for loading the dataset, preprocessing, model implementation and k-fold validation implementation)

Fig4.3

Language Packages used

R caret, e1071, randomforest

Python sklearn

Fig4.4

By implementing the process mentioned above, in both the languages, figures 4.1, 4.2, 4.3 and 4.4

were obtained. From figures 4.2, 4.3 and 4.4 it can be concluded that python is the better suited

language for this task. It is quicker to run machine learning models in python and the availability of

various machine learning models and preprocessing functionalities within a single external library

makes it a more efficient language to use.

 Conclusion
From all the observations made above, the differences between the two languages is quite apparent.

R excels at data/time-series analysis while python is better for tasks like machine learning, data

preprocessing and natural language processing. The reason why R is so good at data analysis is because

it is a statistical language made by statisticians. It already contains many inbuilt analytical

functionalities for which python has to rely on external libraries. It also contains an astonishing number

of external statistical packages which allow for very comprehensive data analysis unlike python. The

quick nature of R code also makes it very useful for rapid prototyping in an industrial environment.

However, it has its own limitations as well, like, sometimes it can be difficult to handle the large

number of packages present in it or its slow run-time. On the other hand, since python is a

generalpurpose programming language, it has a faster run-time and supports better product

development. Due to a better memory management system, it also supports better machine learning,

preprocessing and NLP functionalities and can handle larger datasets than R. Therefore, as a data

scientist it is one’s responsibility to pick the language that best fits their needs, thus, making it

important for a data scientist to know about both the languages.

Future Work
In this paper, only a few selected topics like data preprocessing, exploratory data analysis, time-series

analysis, natural language processing and machine learning have been covered to highlight the

differences between the two languages. In the future, more advanced topics like deep learning, image

processing, big-data processing, multi-processing, etc. can be covered for further comparing the

differences between the two languages.

 References

1. https://www.tableau.com/

2. https://www.otexts.org/fpp/7/5

3. https://en.wikipedia.org/wiki/Bag-of-words_model

4. https://www.kaggle.com/

Note: The relevant code used for the different sections of this paper can be found at

https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git

https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git
https://github.com/Maverick2024/R-vs-Python-why-you-should-learn-both.git

