
WHAT FINANCIAL BUSINESS 
LEADERS OUGHT TO DEMAND 
FROM DEVOPS

Maintainability: 
Improved analyses, features, and data 
must roll out very frequently, with very 
low latency (delay). Financial project 
requirements, hence the corresponding 
software requirements, need to be agile 
and change over time. New analyses 
need to be performed; new financial 
instruments need to be made available 
to model. Whatever the need, your code 
may very likely need to be modified. To 
handle such changing needs successfully, 
your software needs to be designed 

In many ways, it is not inaccurate 
to describe today’s most successful 
financial organizations as IT 
organizations with banking & 
insurance licenses, rather than 
as financial organizations with 
IT departments. The competitive 
pressure from smaller, specialized, 
online companies is forcing all 
players to continuously improve in 
terms of IT.

Innovation and speed-to-market 
of financial products have often 
been hampered by IT factors, such 
as long lead times for starting 
projects and for moving them into 
production; late stage code merges 
leading to software quality issues; 
manual handovers and approvals; 
infrequent version releases; 
and poor coordination between 
Development and Operations.

Financial projects have so much 
at stake that wise IT engineers 
will hand-pick DevOps priorities 
to match each project’s business 
objectives and exposures. Unless 
business leaders in financial 
organizations are aware of what 
exactly to demand from the 
IT DevOps teams (internal or 
external), they do not have true 
control over today’s complex 
projects. 

Compared to other industries, 
financial industry business 
leaders need to place an unusually 
high priority on the following 
aspects, while rolling big data, AI, 
automation, advanced analytics or 
software development projects.

A good engineering process is 
not completed until all solutions 
are online and running with high 
quality, integrated with their data 
feeds, storage, networks, and 
administration systems. Such 
processes involve elaborate 
DevOps steps, such as dynamically 
creating and using virtual 
servers, tools, storage devices, 
accounts, software, and network 
configurations. 
Let me conclude by saying that 
there are a lot of ways to build 
financial software, some good, 
many poor. Given the complexity of 
systems today, and the need to be 
quick, agile and responsive in the 
market, financial business leaders 
need to consciously set high-
level expectations from DevOps 
(both from internal or external 
development teams). 

Mr. Ritesh Srivastava,
Vice President - Engineering, Quadratic Insights Pvt. Ltd.

from the beginning with extensibility in 
mind. It needs to rely on a combination of 
strong type systems and thorough testing, 
to make rapid and major refactoring 
possible.

Data integration:
The ability to ingest and digest a never-
ending stream of new information; the 
more feeds (atomic inputs) that can be 
handled, the better. One common theme 
in financial projects nowadays is the wide 
array of data pulled in, its variable quality 
and formats. Your offering may require 
interaction with anything from live feeds 
from a stock exchange, legacy files from a 
mainframe, Microsoft Access databases, 
or the Twitter firehose. To work with such 
varied data, it is important that all your 
software first cleans up, or sanitizes, the 
data that it needs. Your software should 
use strict parsing rules. Your software 
should come with a monitoring solution 
that notifies you when it sees inexplicable 
data in one of your data feeds. 

Automated Deployment: 
At Quadratyx, our DevOps teams routinely 
huddle with developers & data scientists, 
to understand the key aspects of design. 
This understanding helps them use 
the right automation & configuration 
tools to build the complete pipelines for 
continuous integration & continuous 
delivery (CI/CD). With such an approach, 
we can deploy 50-node dynamic clusters 
in just a few hours. 

Automated Testing:
An uncaught mistake or security 
loophole can quickly run into hundreds of 
thousands of dollars in cost, sometimes 
much more. In case your software build 
systems allow you to release code that 
has not yet been through your test suite, 
or even worse, they allow you to be unsure 
of whether the released code was tested, 
you are entering the land of nightmares. 
Your software teams and vendors must 
be aware that excellent Quality Assurance 
Automation is a core part of your build 
systems. At Quadratyx, we follow Test 
Driven Development [TDD], which when 
combined with continuous integration and 

www.quadratyx.com www.flatworldsolutions.com

continuous delivery (CI/CD), allows code 
updates to be released as frequently as 
daily. An assurance from your software 
team or vendor that they “write quality 
code in the first place” is great but is not a 
substitute for automated testing. Multiple 
tools exist today that help with automating 
penetration testing, security testing, and 
performance testing.

Compliance, regulation, 
and auditability: 
To minimize chances of malfeasance, 
sensitive systems should always be 
modular in design, and unrelated 
components should run in separate 
processes -- ideally in separate virtual 
machines (VMs) separated by firewalls. A 
defect, code injection, privilege escalation, 
or social-engineering attack on one 
service or component should still not be 
able to tamper another service. While 
building deployment blueprints, Quadratyx 
DevOps teams work closely with the 
architects to ensure that this practice is 
followed fully. 


